3.8.20 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x)) \, dx\) [720]

Optimal. Leaf size=45 \[ -\frac {2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a \sqrt {\cot (c+d x)}}{d} \]

[Out]

-2*(-1)^(1/4)*a*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d-2*a*cot(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3754, 3609, 3614, 214} \begin {gather*} -\frac {2 a \sqrt {\cot (c+d x)}}{d}-\frac {2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(-2*(-1)^(1/4)*a*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d - (2*a*Sqrt[Cot[c + d*x]])/d

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3614

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2*(c^2/f), S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3754

Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rubi steps

\begin {align*} \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x)) \, dx &=\int \sqrt {\cot (c+d x)} (i a+a \cot (c+d x)) \, dx\\ &=-\frac {2 a \sqrt {\cot (c+d x)}}{d}+\int \frac {-a+i a \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 a \sqrt {\cot (c+d x)}}{d}+\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{a+i a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=-\frac {2 \sqrt [4]{-1} a \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a \sqrt {\cot (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.61, size = 67, normalized size = 1.49 \begin {gather*} \frac {2 a \sqrt {\cot (c+d x)} \left (-1+\tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right ) \sqrt {i \tan (c+d x)}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x]),x]

[Out]

(2*a*Sqrt[Cot[c + d*x]]*(-1 + ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]*Sqrt[I*Tan[c
 + d*x]]))/d

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 4 vs. order 3.
time = 13.11, size = 734, normalized size = 16.31

method result size
default \(-\frac {a \left (i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-i \cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-\cos \left (d x +c \right ) \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+i \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )-i \sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \EllipticPi \left (\sqrt {-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+\cos \left (d x +c \right ) \sqrt {2}\right ) \sin \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {2}}{d \cos \left (d x +c \right )^{2}}\) \(734\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-a/d*(I*cos(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I*cos(
d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-cos(d*x
+c)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+I*(-(cos(d
*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-I*(-(cos(d*x+c)-1-sin(d*x+c))/sin
(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-si
n(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+cos(d*x+c)*2^(1/2))*sin(d*x+c)*(cos(d*x+c)/sin(d*x+c))^(3/2
)/cos(d*x+c)^2*2^(1/2)

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.52, size = 127, normalized size = 2.82 \begin {gather*} \frac {{\left (-\left (2 i - 2\right ) \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \left (2 i - 2\right ) \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \left (i + 1\right ) \, \sqrt {2} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \left (i + 1\right ) \, \sqrt {2} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a - \frac {8 \, a}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/4*((-(2*I - 2)*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) - (2*I - 2)*sqrt(2)*arctan(-1/2*
sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + (I + 1)*sqrt(2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) +
1) - (I + 1)*sqrt(2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a - 8*a/sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.67, size = 228, normalized size = 5.07 \begin {gather*} \frac {d \sqrt {\frac {4 i \, a^{2}}{d^{2}}} \log \left (\frac {{\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {4 i \, a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 2 i \, a e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) - d \sqrt {\frac {4 i \, a^{2}}{d^{2}}} \log \left (-\frac {{\left ({\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {4 i \, a^{2}}{d^{2}}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 2 i \, a e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a}\right ) - 8 \, a \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(d*sqrt(4*I*a^2/d^2)*log(((d*e^(2*I*d*x + 2*I*c) - d)*sqrt(4*I*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) - 1)) + 2*I*a*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) - d*sqrt(4*I*a^2/d^2)*log(-((d*
e^(2*I*d*x + 2*I*c) - d)*sqrt(4*I*a^2/d^2)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - 2*I*a
*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/a) - 8*a*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)
))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} i a \left (\int \left (- i \cot ^{\frac {3}{2}}{\left (c + d x \right )}\right )\, dx + \int \tan {\left (c + d x \right )} \cot ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c)),x)

[Out]

I*a*(Integral(-I*cot(c + d*x)**(3/2), x) + Integral(tan(c + d*x)*cot(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)*cot(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i),x)

[Out]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i), x)

________________________________________________________________________________________